Topics within Calculus
In the previous section, we learned useful formulae for solving derivatives. They are called the
Product Rule: $\displaystyle{\frac{df(x)g(x)}{dx} = f'(x)g(x)+g'(x)f(x)}$
and the
Quotient Rule: $\displaystyle{\frac{d \frac{f(x)}{g(x)}}{dx} = \frac{f'(x)g(x)-g'(x)f(x)}{(g(x))^2}}$
Now it's time to put these formulas to use.
Here are some practice problems to use these formulas.
$\displaystyle{\frac{d \tan{x}}{dx} = }$
$$\frac{\cos x\cdot\cos x+\sin x\cdot\sin x}{\cos^2x}=\frac{\cos^2x+\sin^2x}{\cos^2x}$$
Use the pythagorean identity:
$$=\frac{1}{\cos^2 x} = \sec^2x$$
$\displaystyle{\frac{d f(x)e^x}{dx}}= e^x \cdot$
Use the product rule to solve the derivative
$$f\left(x\right)e^x+f'\left(x\right)e^x$$
Distribute:
$$=\boxed{e^x\left[f\left(x\right)+f'\left(x\right)\right]}$$
$\displaystyle{\frac{d \sec x}{dx}}= $
Use the Quotient Rule to solve the derivative:
$$\frac{\left(0\right)\left(\cos x\right)-\left(-\sin x\right)\left(1\right)}{\cos^2x}=\frac{\sin x}{\cos^2x}=\boxed{\tan x\sec x}$$
$\displaystyle{\frac{d\csc x}{dx}}= $
Use the Quotient Rule to solve the derivative:
$$\frac{\left(0\right)\left(\sin x\right)-\left(\cos x\right)\left(1\right)}{\sin^2x}=-\frac{\cos x}{\sin^2x}=\boxed{-\csc x\cot x}$$