Topics within Calculus
In the previous lesson, we covered what a derivative is, and how to find it.
We learned that the standard formula to find the derivative of a function $f(x)$ is $$\lim_{\delta x \to 0}\frac{f(x+\delta x)-f(x)}{\delta x} = \frac{\delta y}{\delta x}.$$
If you're unsure on how to type something here, check out some of the great $\LaTeX$ tutorials on the internet! (Here's a good reference). If you want to see how I typed something, you can right-click on any of the math, and check out the TeX commands. Otherwise, Google is always your friend.
$\displaystyle{\frac{d \sin{x}}{dx} = }$
Distribute, and split the limit:
$$\lim_{\delta x \to 0} (\sin x)\frac{\cos{\delta x} -1}{\delta x} + \lim_{\delta x \to 0}(\cos x)\frac{\sin x}{x}$$Look! There are our old friends, LI3
and LI4
, hiding out in our practice problems! We can simply substitute, and move on:
$$(\sin x)(0)+(\cos x)(1) = \boxed{\cos x}$$
More neatly written,$$\frac{d \sin{x}}{dx} = \cos x.$$
$\displaystyle{\frac{d\cos x}{dx}}= $
Remember that the limit operation is distributive across multiplication, division, addition, and subtraction. Below, we distribute amongst subtraction.
$$\lim_{\delta x \to 0} \cos x (\frac{\cos{\delta x} -1}{\delta x}) - \lim_{\delta x \to 0} \sin x(\frac{\sin{\delta x}}{\delta x})$$The value of $x$ is independent of $\delta x$, the approaching variable, so we can remove values that are functions of $x$ to be a coefficient of the limit.
$$ \cos x \cdot\lim_{\delta x \to 0}\frac{\cos{\delta x} -1}{\delta x} - \sin x\cdot\lim_{\delta x \to 0}\frac{\sin{\delta x}}{\delta x}$$Aha! There's our LI3
and LI4
! Substitute:
$\displaystyle{\frac{de^x}{dx}}= $
LI2
.Set up the limit: $$\lim_{\delta x \to 0} \frac{e^{x\delta x} - e^x}{\delta x}.$$
Now, we can factor $e^x$ out of the limit: $$e^x\lim_{\delta x \to 0} \frac{e^{\delta x} - 1}{\delta x}.$$
This is LI2
! We can substitute LI2
=1:
$$ \frac{de^x}{dx} = e^x.$$
This is one of the most important differentiations, next to $\sin x$ and $\cos x$. This will be particularly useful in the coming chapters.
$\displaystyle{\frac{d\ln x}{dx}}= $
Apply the difference of logarithms formula:
$$\lim_{\delta x \to 0} \frac{1}{\delta x}\ln{(\frac{x+\delta x}{x})}$$ $$\lim_{\delta x \to 0} \frac{1}{\delta x}\ln{(1+\frac{\delta x}{x})}$$Now we apply the logarithm coefficient formula:
$$\lim_{\delta x \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{1}{\delta x}}]}$$ $$\lim_{\delta x \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{x}{x\delta x}}]}$$ $$\lim_{\delta x \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{x}{\delta x}\cdot \frac{1}{x}}]}$$ $$\lim_{\delta x \to 0} \frac{1}{x}\ln{[(1+\frac{\delta x}{x})^{\frac{x}{\delta x}}]}$$ $$\frac{1}{x}\lim_{\delta x \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{x}{\delta x}}]}$$Wow! Doesn't it resemble LI5
?
However, the actual approaching variable is $\delta x$, not $\frac{\delta x}{x}$. So, we can't immediately substitute for our identity.
So, I guess we're stuck now- there's nothing we can do. Or is there?
Let's step away from the problem and think about it for a moment. As $\delta x$ approaches 0, what does $\frac{\delta x}{x}$ approach?
We can just plug in 0 to the numerator, and we get 0! So now, we can say that
$$\frac{1}{x}\lim_{\delta x \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{x}{\delta x}}]}=\frac{1}{x}\lim_{\frac{\delta x}{x} \to 0} \ln{[(1+\frac{\delta x}{x})^{\frac{x}{\delta x}}]}$$(Make sure you see why that step was necessary.)
Now, we can just substitute LI5
here: